RGBD SLAM - Amazon SageMaker Usage Notes

Amazon SageMaker, EC2 Instances

Posted by Rico's Nerd Cluster on August 22, 2024

Components

  • IAM role: IAM (Identity Access Management) is a set of permissions that define what actions an entity (services, user, aplications) can do. A role uses temporary creds while a user uses more permanent creds.

  • Debugger (At least compatible with TensorFlow). Video Explanations

    • can add rules, e.g., vanishing gradient rule (your model is not updating anymore), overfit (can see in trial details about warnings)
    • Save the model on S3 automatically
    • github amazon sagemaker examples
    • Pre-req: load Amazon SageMaker Studio
  • Pre-Installed Frameworks

    • XGBoost
    • Autogluon:
      • Deployment
        • these three all have a backbone (encoder), and a decoder
      • Models:
        • FCN
        • PSP
        • Deep Lab V3
      • Process: 1. Put Data on S3 2. Org data into: train (jpg), validation (jpg), train_annotation(png), validation_annotation (single channel uint8 png), label_map (json, mapping between uint8 -> label names)
    • Pytorch

I like Julien Simmon’s videos on Amazon SageMaker.

EC2 GPU & CPU Instances

  • Free tier 50 hours per month of m4.xlarge or m5.xlarge for training, 125 hours per month of m4.xlarge or m5.xlarge for hosting
  • m5.xlarge, g5.xlarge pricing (Source: Reddit Post), there is a performance and price chart as of Amazon EC2 types:
Instance Type Cores RAM GPU Prompt Eval Rate (tokens/s) Eval Rate (tokens/s) Price (per hr) Price (per mo)
c7g.8xlarge (CPU) 32 64 GB N/A 38.38 25.07 $1.27 $941.16
r6g.4xlarge (CPU) 16 128 GB N/A 10.15 8.29 $0.88 $657.10
g4dn.xlarge (GPU) 4 16 GB 16 GB 222.23 41.71 $0.58 $434.50
g4dn.2xlarge (GPU) 8 32 GB 32 GB 214.25 41.74 $0.84 $621.24
g5.xlarge (GPU) 4 16 GB 24 GB 624.29 68.08 $1.12 $831.05
g5.2xlarge (GPU) 8 32 GB 24 GB 624.48 66.67 $1.35 $1,000.96