Math - Eigen Value, Eigen Vector, and Eigen Value Decomposition

What is Eigen Value Decomposition?

Posted by Rico's Nerd Cluster on January 15, 2017

Eigen Values and Eigen Vectors

Basic Definitions

\[\begin{gather*} Ax = \lambda x \end{gather*}\]
  • $x$ is an eigen vector, $\lambda$ is an eigen value

Important properties

  • Only square matrices have eigen values and vectors

Eigen value Decomposition

Say a matrix $A$ has two eigen vectors $v_1$, $v_2$, and their corresponding eigen values are: $\sigma_1$, $\sigma_2$

Then, we have

\[\begin{gather*} A \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \end{gather*}\]

So, we can get Eigen Value Decomposition:

\[\begin{gather*} V = \begin{bmatrix} v_1 & v_2 \end{bmatrix}, \Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \\ => A = V \Lambda V^{-1} \end{gather*}\]

Applications

Series of self-multiplications

Assume we want to apply the same linear transform 8 times. Say, $A^8$

Matrix multiplication is expensive. One can use divide and conquer, and do the multiplication in the order of $log2(8)$ times.

But with Eigen Value Decomposition, this problem becomes:

\[\begin{gather*} A^8 = V \Lambda^8 V^{-1} \end{gather*}\]

$\Lambda^8$ is easy to calculate, because it’s just a diagonal matrix.