Glossary
- Inner product: $<a,b> = \vec{a}^T \cdot \vec{b}$, which is a.k.a “dot product”
- Outer product: $a \otimes b = \vec{a} \cdot \vec{b}^T$, which results in a matrix.
Hadamard (Schur) Product
Hadamard (Schur) Product is Elementwise Product \(A \circ B = [A1*B1, A2*B2...]\)
Matrix Multiplication And Outer Product
The definition of Matrix Multiplication of $C = AB$ is $C_{ij} = \sum_k A_{ik}B_{kj}$, where A is mxn
, B is nxp
The matrix product is the sum of the outer product of A’s columns and B’s rows
That is, $AB = \sum_{k=1}^n a_k b_k^{T}$. Why?
Because for any given element $C_{ij}$, we have $C_{ij} = \sum_k A_{ik}B_{kj}$.
Special case 1
For orthonormal vectors $v_1 \dots v_n$, $v_1v_1^T + \dots + v_nv_n^T = I$. Proof:
\[\begin{gather*} (v_1v_1^T + \dots + v_nv_n^T)(v_1v_1^T + \dots + v_nv_n^T) = (v_1v_1^T + \dots + v_nv_n^T) \end{gather*}\]- Matrix $(v_1v_1^T + \dots + v_nv_n^T)$ is the right and left identity of itself. So, $v_1v_1^T + \dots + v_nv_n^T$ is identity
Special Case 2
The product of a matrix and a diagonal Matrix has columns being diagonal term * columns:
\[\begin{gather*} \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} \lambda_1 v_1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & \lambda_2 v_2 \end{bmatrix} \\ = \begin{bmatrix} \lambda_1 v_1 & \lambda_2 v_2 \end{bmatrix} \end{gather*}\]Transpose of Outer Product of Two Vectors
\[\begin{gather*} (v_1 v_2^T)^T = (v_2^T)^T(v_1^T) = v_2 v_1^T \end{gather*}\]This might be a no-brainer (really?), but don’t underestimate this. Cholesky Decomposition is built on top of it.
Correlation Matrix
The Matrix $X^TX$ is called a correlation matrix of $X$. It is so very common in multiple fields, such as control system, SVD, etc. Each element is the inner product of $X_i$ and $X_j^T$. And that’s “correlation”
\[\mathbf{X}^T \mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_n^T \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_m \end{bmatrix} \\=> \begin{gather*} \mathbf{X}^T \mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \mathbf{x}_1 & \mathbf{x}_1^T \mathbf{x}_2 & \cdots & \mathbf{x}_1^T \mathbf{x}_m \\ \mathbf{x}_2^T \mathbf{x}_1 & \mathbf{x}_2^T \mathbf{x}_2 & \cdots & \mathbf{x}_2^T \mathbf{x}_m \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_m^T \mathbf{x}_1 & \mathbf{x}_m^T \mathbf{x}_2 & \cdots & \mathbf{x}_m^T \mathbf{x}_m \\ \end{bmatrix} \end{gather*}\]So the correlation matrix is
- Positive semi-definite
- Symmetric